

	華	人四地大學進入	(2008年世	世界大學不分領域
	科	研論文質量評比	七之表現	Panking
		地區 校名	世界總分	世界排名 / 參考排名
Taiwan ⁻ ^{臺灣}	國立臺灣大學	17.23	141 (+44)	*114
•	國立成功大學	10.49	328 (+32)	204 🖌
•	國立清華大學	9.46	366 (+63)	260
•	國立交通大學	7.82	463 (+8)	327
· · · ·	國立陽明大學	7.66	475	³⁸⁵ Overall ranking shows that
Mainland 大陸	北京清華大學	16.93	152 (+98)	³⁰⁶ all universities in Greater
•	北京大學	16.45	164 (+77)	³⁴⁵ China rank autoida of the ton
•	浙江大學	13.88	220 (+84)	367 China rank outside of the top
•	中國科技大學	13.10	244 (+74)	131 100 universities in the world
•	上海交通大學	11.70	289 (+80)	³⁶⁵ in terms of scientific impact.
•	南京大學	11.66	292 (+105)) 309 Ponking in individual fields
•	復旦大學	11.33	305 (+31)	356 Ranking in individual neids
•	大陸中山大學	9.69	358 (+123)) (like engineering and
•	南開大學	8.95	389	⁴¹⁷ science) tend to be better
•	吉林大學	8.67	406 (+81)	
•	山東大學	8.08	443	308
	四川大學	7.66	475	
Hong Kong	武漢大學	7.36	498	
香港	香港大學	15.92	173 (+9)	189
	香港中文大學	12.09	275 (-45)	240
	香港科技大學	10.86	320 (+7)	223
-A-15-20-20-20-20-20-20-20-20-20-20-20-20-20-	香港城市大學	8.84	397 (-5)	286
Singanore	香港理工大學	7.97	455 (+14)	309
新加坡	新加坡國立大學	學 21.23	86 (+10)	64
	南洋理工大學	11.61	294 (+95)	255
ELSEVIER	Building Insights	. Breaking Boundaries.™		6

Cł Ar	ninese ar merican c	ticles are ones	e accepte	d much I	ess than	
	20	05	20	06	2007(Ja	n – Jun)
	% of submissions *	Rate of acceptance	% of submissions	Rate of acceptance	% of submissions	Rate of acceptance
China	14%	24%	15%	26%	15%	24%
US	20%	58%	16%	55%	17%	51%
Total		42%		40%		38%
	Select	ion of Else	evier Editori	al Outflow	Statistics	
* Numbe	r of submissio	ns from the co	ountry / Total n	umber of subr	missions Elsev	ier received.
ELSEVIE	R Building I	nsights. Breaking Bou	unda r ies.™			7

, and the	Figures/Tables References	5 PDF (787 K)
doi:10.1016 Copyright© Published b	ij.jher.2008.04.001 2008 International Associa the y Elsevier B.V.	main issue Research, Asia Pacific Division
Stratifie	d flow through outlets	
Jiahua Fan ^a	. 🖂	Specific
^a China Insti Received 31	ute of Water Resources and Hydropov August 2007: revised 2 April 2009: a	wer Research, Beijing, China
Abstract	August 2007, Texiseu 2 April 2000, a	The title honestly reflects the
Experimenta aspiration, v	I and theoretical studies of stratified fl /ithdrawal layer thickness, and outflow	now through Subject matter of the paper.
limiting heig different kind	ht of aspiration is proposed. It is found is of selective withdrawal, including two more of the salinity of density current au	I that this non-dimensional criterion changes only slightly for wo-layer flow and linearly stratified flow through outlets at different and the outflow discharge are known the limiting height of
aspiration o	the withdrawal layer thickness can be sity currents through outlets are studi	e estimated. Second, characteristics of the outflow concentration ied. Based on the field observations in Sanmenxia Reservoir and
of turbid der		
of turbid der Guanting Re	servoir in China, as well as a number	r of laboratory experimental data from outlets in vertical walls and
of turbid der Guanting Re bottom outle	servoir in China, as well as a number ts, a simplified model is developed to	r of laboratory experimental data from outlets in vertical walls and o analyze the empirical relationship between outflow
of turbid der Guanting Re bottom outle concentration	servoir in China, as well as a number ts, a simplified model is developed to n and several critical parameters inclu- id outlet elevation. These research fier	r of laboratory experimental data from outlets in vertical walls and o analyze the empirical relationship between outflow uding outflow discharge, inflow sediment concentration, interface withing are readily applicable for outlet design especially in

Assessment of global warming impacts on water resources and ecology of a river basin in Japan

1. Introduction

Global warming would cause serious problems to the sustainability of our society. With the developments of General Circulation Models (GCMs) and Geographic Information System (GIS), the assessment of global warming impacts on river basin environments is possible. The GCMs can provide worldwide meteorological estimation of atmosphere pressure, air temperature, and precipitation, and the GIS can process the available remote-sensing datasets, such as land elevation and land use. Kojiri (1997) and Fijiwara et al. (2006) proposed an evaluation method of global warming, and Dawson et al. (2000) applied the neural network to study river discharge changes. In addition, regarding global warming, the IPCC (2001) issued warnings about the serious impacts of greenhouse gas emissions and suggested necessary countermeasures. However, the investigation of the global warming impacts on the water resources and river basin ecology lags the requirement of evaluating socio-economic sustainability. Therefore, this paper will explore such global warming impacts.

In this paper, with GCM outputs, a distributed hydrological and environmental model will be used to assess the impact of global warming on water resources and ecology for a basin in Japan, the Nagara River basin. Comparing two time periods, 1979 to 2000 and 2079 to 2100, over the basin, four aspects are investigated. They are (i) precipitation, snowpack and discharge, (ii) air temperature and water temperature, (iii) fish habitats, and (iv) agricultural crops and vegetation.

ing Insights. Breaking Boundaries.¹

	IIIUS Table 2. Co	tratio	notations of the soil layers	used only for essential data.	
Habitat	Depth (cm)	Colour codes	Colour notation		
Woodland	0-5	10YR4/2	Dark grayish brown		
	5-10	2.5Y5/3	Light olive brown		
	10-15	2.5Y6/3	Light yellowish brown		
	15-20	2.5Y6/4	Light yellowish brown		
	20-30	2.5Y6.5/3	Light yellowish brown -Light olive brown		
	30-40	2.5Y5/3	Light olive brown		
	40-50	2.5Y5/3	Light olive brown	This table can all be said in the text.	
	50-60	2.5Y6/3	Light yellowish brown	THIS LANE CALLAIL WE SAID IT THE LEXT.	
	60-70	2.5Y5/4	Light olive brown	The curfage colle wore dark grouich	
	70-80	2.5Y6.5/3	Light yellowish brown -Light olive brown	The surface soils were dark grayish	
	80-90	2.5Y6.5/3	Light yellowish brown -Light olive brown	prown, grading to light olive brown	
	90-100	2.5Y5/3	Light olive brown	(woodland) light olive brown	
Wetland	0-5	2.5Y4/2	Dark grayish brown		
	5-10	2.5Y5.5/2	Grayish brown -Dark grayish brown	(wetland) and nale olive (grassland)	
	10-15	2.5Y5/2	Grayish brown	(wettand), and pare onve (grassiand)	
	15-20	2.5Y4/1.5	Dark gray -Dark grayish brown	at 100 cm /	
	20-30	2.5Y4/2.5	Dark grayish brown -Olive brown		
	30-40	2.5Y4/2.5	Dark grayish brown -Olive brown		
	40-50	2.5Y4/2	Dark gravish brown		
	50-60	2.5Y4/2	Dark grayish brown		
	60-70	2.5Y4/2	Dark grayish brown		
	70-80	2.5Y4/2	Dark grayish brown		
	80-90	2.5Y4/2	Dark grayish brown		
	90-100	2.5Y4/2	Dark grayish brown		
Grassland	0-5	2.5Y4/2	Dark grayish brown		
	5-10	5Y5/2	Olive gray		
	10-15	5Y6/2	Light olive gray		
	15-20	5Y6/2	Light olive gray		
	20-30	5Y6/2	Light olive gray		
	30-40	5Y6.5/2	Light olive gray -Olive gray		
	40-50	5Y6/2	Pale olive		
	50-60	5Y6/2	Pale olive		
	60-70	5Y6/2	Light olive gray -Pale olive		
	70-80	5Y6/2	Light olive gray -Pale olive		
	80-90	5Y6/2	Pale olive		
	90-100	5Y6/2	Pale olive		

Revision of a tal	ble			
Depth	Gravel	Sand	Mud	Τ
5 m	3,42%	81.41%	15,17%	
50 m	2,5%	58.42%	39.08%	
100 m	0,0%	32.5%	67.5%	
	-			
Water depth (m)) Gravel (%)	Sand (%)	Mud (%)	
5	3.4	81.4	15.2	
50	2.5	58.4	39.1	
100	0	32.5	67.5	
100	0	3210		

Avoid long and boring	Set Number	Field Condition	Variation of Salinity (psu)	Variation of Temperature (°C)	Ambient Velocity Variation (m/s)	Status of Gas Separation	Plume Dynamic Terminating Criterion
Avolu long and boring		(1). 07/09/2000 at I1 (Summer)	Figure A2 (a)	Figure A2 (b)	Figure A1 (a)		
tables		(2). 12/09/2000 at 11 (Winter)	Figure A3	Figure A3 (b)	Figure A1 (b)	1	
	1	(3). 03/15/2001 at I1 (Extreme Weather)	Figure A4	Figure A4 (b)	Figure A1	Not Allowed	
		(4). 07/09/2000 at P (Summer)	Figure A5	Figure A5	Figure A1	1	
		(5). 07/09/2000 at II (No Ambient Velocity)	Figure A2	Figure A2 (b)	NA	1	Neutral
		(1). 07/09/2000 at I1 (Summer)	Figure A2	Figure A2	Figure A1		Buoyancy Level
What a crowded	//	(2). 12/09/2000 at 11 (Winter)	Figure A3	Figure A3 (b)	Figure A1	1	
And uninformativo	2	(3). 03/15/2001 at 11 (Extreme Weather)	Figure A4	Figure A4	Figure A1	Allowed	
		(4). 07/09/2000 at P (Summer)	Figure A5	Figure A5	Figure A1 (d)	1	
		(5). 07/09/2000 at II (No Ambient Velocity)	Figure A2 (a)	Figure A2 (b)	NA	1	
		(1). 07/09/2000 at I1 (Summer)	Figure A2	Figure A2	Figure A1		
The same field condition	Inc	(2). 12/09/2000 at I1 (Winter)	Figure A3	Figure A3 (b)	Figure A1 (b)	1	
The same field condition	3	(3). 03/15/2001 at I1 (Extreme Weather)	Figure A4	Figure A4	Figure A1	Not Allowed	
are repeated 4 times		(4). 07/09/2000 at P (Summer)	Figure A5	Figure A5 (b)	Figure A1 (d)	1	
		(5). 07/09/2000 at II (No Ambient Velocity)	Figure A2	Figure A2 (b)	NA	1	Velocity
		(1). 07/09/2000 at I1 (Summer)	Figure A2	Figure A2	Figure A1		Criterion
		(2). 12/09/2000 at I1 (Winter)	Figure A3	Figure A3	Figure A1 (b)	1	
	4	(3). 03/15/2001 at 11 (Extreme Weather)	Figure A4	Figure A4 (b)	Figure A1	Allowed	
		(4). 07/09/2000 at P (Summer)	Figure A5	Figure A5 (b)	Figure A1	1	
		(5). 07/09/2000 at II (No Ambient Velocity)	Figure A2 (a)	Figure A2 (b)	NA		

Avoid excessive self-citation a	and journal self-citation
Citation Overview Citations received since	It is easy to exclude
Author: Exclude from citation overview: Self citations	your citation record.
Sort documents Date Range year descending 2005 to 2007 Update h index = 2 2 out of 44 documents have each been site	Overview
"ISI stopped listing this journal because 85 percent of the citations to the publication were	KED TIMBER IY, NO STRAIGHT THING WAS EVER MADE.
Coming from its own pages."	rable Citations

2. \$	Suggested length	n of a full article
inclu	ding ESSENTIAL data of	nly."
	– Julian Eastoe, C	o-editor, Journal of Colloid and Interface Science
> 1	Fitle page	
> /	Abstract	1 paragraph
>	ntroduction	1.5-2 manuscript pages (double-spaced, 12pt)
> N	Viethods	2-4 manuscript pages
≻ F	Results and Discussion	10-12 manuscript pages
> (Conclusions	1-2 manuscript pages
≻ F	Figures	6-8
> 7	Tables	1-3
> F	References	20-50 items
Lette For e	ers or short communication example, 3000 words with	ons have a stricter limitation of the length. In no more than 5 illustrations.
ELSEVIER	Building Insights. Breaking Boundari	66

4. Cover letter	April XX, 2007-+*
	JOURNAL EDITOR NAME+
 Basic information should 	Editor-in-Chief+
be included as follows:	NAME OF JOURNAL +
\sim Editor name(s)	۹ ¹
	Dear Dr. JOURNAL EDITOR NAME: ↔
 Originality of submission 	با Fam submitting the manuscript "Manuscript Title" by RESEARCHER NAME for
 No competing financial interests 	consideration for publication in NAME OF JOURNAL. I confirm that the manuscript has not been published or under consideration for publication elsewhere. Further, this submission has been approved by the institution where the study was conducted. Correspondence concerning the manuscript should be
Suggest reviewers	to the author, RESEARCHER NAME. Hook forward to learning your response to our submission. 4
 Mention significance or special points 	Sincerely, + ¹
special points	RESEARCHER NAME, Ph.D. ↔
	Email: <u>xxxxx@xxx.edu.cn</u> +/
	UNIVERSITY NAME, DEPARTMENT, AND ADDRESS#

	Editor's Comments to Editor:	It is a poor quality paper. On the basis of my review, I recommend rejection.	
	Editor's Comments to Author:	Associate Editor: Flooding flow-sediment problem is solved by two implicit finite difference methods, e.g. linear and nonlinear coupled methods. Also non-linear coupled and uncoupled models were developed incorporating grain sorting and bed armouring. The Redhill River watershed was selected as a case study and the results of application of developed models to flow and sediment variations were examined.	
EL		Having read the paper, I find this is a mere traditional exercise using a FORTRAN program NAG developed by the University of London in 1985. There is nothing original that warrants an international publication. Although authors have stated that they considered a case study, little is found to validate the results obtained from the models by the field data. Only in Fig. 8, a lone set of field data was used for the validation of model results that too have little agreement with the filed data. Additionally, the English presentation is also poor. I therefore recommend the paper be declined.	75

A sample response

Response to the Comments from Associate Editor

"it is not clear how the jet edge is defined for the wall jet spread rate in Fig.6 (for the line jet, the jet edge is defined when u = 0?)."

We defined the jet edge where u = 0. This is clarified in the revised text (the second paragraph from the bottom on p.6), and we have added some comments (in the same paragraph) about this definition.

"The 3D potential flow model prediction seems to work only for the centerplane maximum velocity very close to the outlet; the agreement with data is mainly qualitative."

We have added discussion on the extent of the orifice influence (last paragraph on p.8). The 3D potential flow model work close to the orifice (within about 3d, where d is the diameter). The comparisons are shown in both Fig. 9 and 10. We are actually quite pleased with the agreement.

"Also the flow of a 2D jet in confined depth in previous studies (e.g. Jirka and Harleman 1979) has quite different downstream controls even for weakly buoyant cases; the relation to the present study needs to be better discussed."

	Assistance with English writing
	American Journal Experts Editorial Certification
a the same series	This document certifies that the manuscript tilled "Comparison of Genetic Algorithm and Linear Programming for Real-Time Operation of Reservoir System for Irrigation Scheduling " was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native English speaking editors at American Journal Experts. Neither the research content nor the authors' intentions were altered in any way during the editing process. Documents receiving this certification should be English-ready for publication - however, the author
Mappletion	has the ability to accept or reject our suggestions and changes. To verify the final AJE edited version, please visit our verification page. If you have any questions or concerns over this edited document, please contact American Journal Experts at support@journalexperts.com
them frame considered	Manuscript title:
the gallery	Authore
rving the si	Autors.
avest to h	Key:
ELOUVIER	This certificate may be verified at www.journatexperts.com/certificate Building Insights. Breaking Boundaries. ¹⁴ 81

Don't resubmit a rejected manuscript to another journal without significant revision! It won't work.

- The original reviewers (even editors) often find out, leading to animosity towards the author.
- A suggested strategy
 - In your cover letter, declare that the paper was rejected and name the journal.
 - Include the referees' reports and a detailed letter of response, showing how each comment has been addressed.
 - Explain why you are resubmitting the paper to this journal, e.g., this journal is a more appropriate journal; the manuscript has been improved as a result of its previous review; etc.

