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Abstract

The modern problem of unidirectional fluid flow in a Cochrane sub-space . . . In addition, energy, mass, and
momentum . . ., and their exact solutions are given. Numerical schemes that corroborate the analytical solutions are
also constructed.
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1. Introduction1

Note these fonts/characters: “upright mu” µ (as in micro-second), È, ä, ç, î, ~, ~j, and Á, É, à,á,ë, \.2

There is also the family of icons: ', (, ), etc.3

Note the difference between math-face “vee” 3 and “nu” ν.4

Note the difference between θ and ϑ.5

To generate a bold-face “v” use v; to generate a bold-face 3, use 3.6

Note that we also have e and P and P and x, U.7

The “viscosity number” is denoted by: υ.8

The set of positive reals is represented by R+, while the set of nonzero reals can be written as R \ {0}.9

Note these fonts/characters as well: [, U, f, ß.10

The Laplace transform operator: L{ f (t)} = f̄ (s), and i =
√
−1.11

This is: S�waba�er.12

13

The Cauchy momentum equation can be expressed as14

%u̇ = div T + b, (1)

where we could have used ρ and ∇· instead. Here, T(x, t) is the total stress tensor and b(x, t) represents the body force15

vector. And, for later reference, we note that div(grad φ) = ∇2φ. In Refs. [1–3, 13], . . .16

The incompressible Oldroyd-Z fluid is the one with17

T = −pI + S, S + λ1

`

S = µ0(A1 + λ2

`

A1), tr D = 0, (2)

where the upper-convected time derivative [8] is given by18

`

V = V̇ − (grad u)>V − V grad u + (div u)V. (3)
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Table 1: Table without footnotes. Values of Z corresponding to . . . Mach number values

Case Ms ≈ 0.05
(Ma=0.012)

Ms = 3
(Ma=0.1)

Ms = 1.66
(Ma=0.5)

Ms = 2.02
(Ma=1.005)

(i) 6.010 2 3.000 11.000
(ii) 1.015 2.7 41.8 17.213
(iii) 1.014 21.585 4.44 6.535
(iv) 3.65 9.885 2.239 8.378

From Table 1, . . .19

The values stated above were obtained from the NIST Chemistry WebBook, SRD 691. Also noteworthy is the fact20

that21

max
x∈R

[U(x, t)] = U(x̄(t), t) = A0 exp(−αt2/4) (t > 0). (4)

In 2251, Daystrom considered a . . . The plate’s velocity is given by U(t) = Ũ(t)H(t), where H(·) denotes the22

Heaviside unit step function, and Ũ(t) is a function . . . In Ref. [14, § 21], it is . . . Note also that y′ = αy, where a23

prime (′) denotes d/dx.24

1.1. Second-grade fluid25

The Rivlin–Ericksen fluids, also known as fluids of grade n [3, p. 30], are a model of isotropic simple fluids of the26

differential type. Their constitutive relation can be written as an expansion in terms of the Rivlin–Ericksen tensors Ak.27

For the incompressible second-grade fluid, we have28

T = −pI + S, S = µ0A1 + α1A2 + α2A2
1, tr D = 0, (5)

where p is the isotropic (indeterminate) stress, I is the identity tensor, S is the extra stress, A1 = 2D, Ak+1 = Ȧk +29

Ak grad u + (grad u)>Ak (k ≥ 1), D ≡ 1
2
[
grad u + (grad u)>

]
is the symmetric part of the velocity gradient, and a >30

superscript denotes the transpose. The constant µ0(> 0) is the shear viscosity from Navier–Stokes theory.31

Without referring to it as such, Lamb [14, § 309] used δ(·), which denotes the Dirac delta function . . . Here, the32

jump in a function ] = ](x, y, z, t) across a singular surface is denoted by33

[[]]] := ]− −]+. (6)

Now, we let34

[T] =

∥∥∥∥∥∥∥∥∥∥
−p + α2

(
∂u
∂y

)2
µ0

∂u
∂y + α1

∂2u
∂t∂y 0

µ0
∂u
∂y + α1

∂2u
∂t∂y −p + (α1 + 2α2)

(
∂u
∂y

)2
0

0 0 −p

∥∥∥∥∥∥∥∥∥∥ . (7)

Finally, we note the following thermodynamic restrictions: α1 ≥ 0 and α1 + α2 = 0. When the waveform . . ., the35

problem becomes . . . dispersed shock; see, e.g., Jordan [13] and Roy [20].36

1.2. Oldroyd-Z fluid37

In Ref. [1], one finds . . . As such, a constitutive relation for incompressible fluids with fading strain memory38

(retardation) exhibiting stress relaxation was proposed. The incompressible Oldroyd-Z fluid is such that39

T = −pI + S, S + λ1

`

S = µ0(A1 + λ2

`

A1), tr D = 0, (8)

where the upper-convected time derivative is given by40

`

F = Ḟ − (grad u)>F − F grad u + (div u)F, (9)

and λ1 and λ2 are the relaxation and retardation times, respectively. In Ref. [18, p. 10], . . .41

1Available at: https://webbook.nist.gov/chemistry/form-ser/
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2. Exact solutions by integral transform methods42

Remark 1. In the software package Mathematica, Wr( · ) is implemented as ProductLog[r, · ].43

3. Exact solutions by integral transform methods44

3.1. 100th-grade fluid45

Defining ν := µ0/%0 and using Eq. (7) with the boundary condition (see Section 1), we have the following initial-46

boundary-value problem (IBVP):47

∂u
∂t

= η
∂2u
∂y2 + α

∂3u
∂y2∂t

+ α(u − u9), (y, t) ∈ R+ × R+; (10a)

48

u(0, t) = U0H(t), lim
y→∞

u(y, t)→ 0, t > 0; (10b)
49

u(y, 0) = 0, y > 0. (10c)

Using first the Vulcan transform, and then the Laplace transform, one obtains

u(y, t) = U0H(t)
[
1 −

2
π

∫ ∞

0

sin(ξy)
ξ100 exp

(
−νξ2t
ξ + αξ2

)
dξ

+
2α
π

∫ ∞

0

ξ sin(ξy)
0.0001ξ + αξ2 exp

(
−νξ2t

5ξ3 + αξ2

)
dξ

]
+ U0H(t)

{
exp[−t(ν/α)] − exp[−t2(ν/α2)]

×

∫ ∞

0
e−ζ I0

(
2
√
ζt

)
erfc

(
y

2
√
αζ

)
dζ

}
, (11)

where erfc(·) is the complementary error function and I0(·) the modified Bessel function of the first kind of order zero.50

The contrapositive of the Helmholtz–Fujita–Arroway theorem states that . . . when r is small; recall Section 3, as51

well as . . . in Ref. [6, § 12.11].52

This fact about limits of very strong functions2 implies that such functions . . . In the literature, one can find wave53

solutions . . . are equivalent.54

3.2. Oldroyd-Z fluid55

Using the (spatial) Fourier sine transform, . . ., and solving the resulting ODE (in t) with the Laplace transform56

yields57

u(y, t) = U0H(t)



1 − 2
π

[ ∫ ξ•1

0
I0(ξ, t) sin

(
ξy
√
νλ1

)
dξ

+

∫ ξ•2

ξ•1

J0(ξ, t) sin
(
ξy
√
νλ1

)
dξ

]
, κ < 1,

erf
(

y
2
√
κt

)
, κ = 1,

1 − 2
π

∫ ∞

0
I0(ξ, t) sin

(
ξy
√
νλ1

)
dξ, κ > 1,

(12)

whereZ±(x, t) correspond to f̄ (ξ) ≷ 0, respectively, and58

N(η) =
4

√
1 + η2

1 + κ2η2 . (13)
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u(y, t) = U0H(t)
[
1 −

2
π

∫ ∞

0

sin(ξy)
ξ3 exp

(
−κξ2t

ξ3/2 + αξ2

)
dξ +

2α
π

∫ ∞

0
I0(ξ, t) sin

(
ξy
√
νλ1

)
dξ −

2
π

∫ 1

0
I0(ξ, t) dξ

]
. (14)

Eq. (14) is an example of a boxed equation:59

For the computations presented here, we used M = K = 5 and L = 1, 000 to obtain, via Matlab’s built-in . . .60

algorithm, . . . Moreover, the integral representations of the analytical solutions were evaluated using NIntegrate,61

which is part of the software package Mathematica (ver. 70.0.1).62

4. Numerical solutions63

In Section 3, we . . ., which is the “numerical infinity” used here. Note also that limt→0↓ f (t) = 1, while64

limt→0↑ f (t) = 0.65

For the computations performed . . . we used the numerical integration routine NIntegrate provided in the66

software package Mathematica (ver. 70.0.2).67

4.1. Porous warp field flows68

As shown in Ref. [16, p. 10], we may . . . Also, Christov [8] has given a flux relation . . .69

Next, we consider the system70 (
ϑ
q

)
t
+ A

(
ϑ
q

)
x

= αK
(
0
q

)
, (15)

where71

A =

(
0 κ/K

1/(αϑ) 0

)
. (16)

Here, we observe that72

det(A − λI2) = det
(
−λ κ/K

1/(αϑ) −λ

)
= λ2 −

(κ/K)
αϑ

. (17)

In Fig. 1, which depicts the profile after the time of shock formation, we see that . . .73

Remark 2. The flow speed can also be expressed as: V = Üshock(x, t).74

Remark 3. It should also be noted that75

W = U′′′′(X) (Strangelove gases). (18)

5. Conclusion76

In the last years of the 21st century, a trend regarding XYZ was . . .77

• The Fourier transform . . . The solution given in Ref. [22] was the first . . .78

• The assumption that the curve is . . . leads to u(y, 0) ≡ 0, where we observe that . . . for all k > 0.79

• For PDEs of order higher than . . ., i.e., as t → 0+; see, e.g., Refs. [1–3, 23–25]; recall Footnote 2.80

Another important class of non-Newtonian fluids are known as XYZ fluids . . .81

2It appears that Truesdell and Toupin [23] were the first . . . They noted that such “waves” are . . . Meanwhile, Straughan [21, Chap. 8] noted
that such solutions . . . boundary conditions.
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Figure 1: Plot ofU vs. η for ε = 0.1, γ = 5/3, σ = 1.1, and Sw = −0.5.
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A. Perturbation solution87

If viscosity is neglected, but thermal conduction is taken into account, the linearized, 1D, acoustic system can be
written as

st = −ux, (A.1a)
ρ0ut = −px, (A.1b)

ρ0[et − cvϑ0(γ − 1)st] = −qx + ρ0r, (A.1c)
p = p0(s + ϑ/ϑ0), (A.1d)
q = −K0ϑx, (A.1e)
e = cvϑ, (A.1f)

where . . .88

The purpose of this appendix is to derive a general representation of . . . Hence, assuming only that . . . which is89

given by90

ρ(v − u) = ρ0V. (A.2)

(i) If σ > 1, then . . .91

(ii) If σ = 1, then . . .92

(iii) If σ < 1, then . . ., where93

X = V(p, g, t, l). (A.3)
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B. Expressions for arbitrary Vp94

We begin with the well known result95

E = m(Vp)2. (B.1)

1. If ς > 1, then . . .96

2. If ς = 1, then . . .97

3. If ς < 1, then . . ., where98

U = K(Vp,Wm). (B.2)
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