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Editorial 

Guidelines on design, measurement and statistics for Appetite 

1. Introduction 

Appetite strives to publish the highest quality science possible. To that 
end, we offer the following Guidelines on experimental design, quanti-
tative measurement, and descriptive and analytic statistics. 

Authors should pay particular attention to the reporting guidelines. 
For the reasons described below, Appetite encourages detailed reporting 
of statistics. It is often convenient to provide this information as sup-
plementary files (Appetite’s term for appendices). 

The Guidelines describe our understanding of current best practices 
for the commonest methods in appetite research. In most cases we 
provide background to clarify the provenance of the practices. We un-
derstand that best practices are often aspirational goals and that there 
are reasonable rationales for not always fulfilling them. 

At the same time, false-positive publications are a serious problem in 
psychology (e.g.,Brown et al., 2018; Ioannidis, 2005, 2014; Landis et al., 
2012; Nelson et al., 2018; Simmons et al., 2011; Wasserstein et al., 
2019). False-positive results are often related to poor statistical practice. 
Appetite seeks to minimize such issues. To this end, authors are urged to: 
[i] design the experiment, including the statistical approach, in advance; 
[ii] conduct the research – including the statistics – with integrity; [iii] 
fully and clearly describe the design and execution of the experiments, 
including statistical methods, randomized or blinded aspects of the 
design, loss of data, etc.; and [iv] interpret statistical outcomes in an 
enlightened fashion, as discussed in §4.2. 

Because the Guidelines are not comprehensive, authors are advised 
to consult statisticians for further guidance concerning the design and 
analysis of their own work. In addition, the development of many of the 
statistical approaches described here are themselves active research 
areas, which is another good reason to consult professionals. The BMJ’s 
“Statistics Notes” series (www.bmj.com/specialties/statistics-notes), 
which has run since 1994, and the American Journal of Clinical Nutrition’s 
series “Best (but Oft-Forgotten) Practices” (beginning with Bier et al., 
2015) are helpful resources. We also recommend that authors keep 
abreast of the literature on how best to mitigate the problem of 
false-positive results (e.g., Ioannidis, 2014; Nelson et al., 2018; Simmons 
et al., 2011; Wasserstein et al., 2019). 

2. Experimental design and related topics 

2.1. Prespecification 

Experimental designs and statistical approaches should be specified 
in advance. For a comprehensive discussion, see Nosek et al. (2018). 
Preregistration services include the Center for Open Science (https://osf. 

io/prereg/) and ClinicalTrials.gov (https://www.clinicaltrials.gov/). 
Other alternatives listed by region are at www.who.int/ictrp/network/ 
primary/en/. 

2.2. Ethics 

Research involving human participants, human material, or human 
data, must have been performed in accordance with the Declaration of 
Helsinki and must have been reviewed by an appropriate independent 
ethics committee. Similarly, research involving non-human animals or 
material derived from them must have been approved by an appropriate 
independent ethics committee. A statement detailing the approval, 
including the name of the ethics committee and the reference number 
where appropriate, must appear in the manuscript. 

2.3. Planning for meta-analyses 

Scientific meaning is rarely established by a single study, but rather 
by the cumulative effect of many similar studies. The state-of-the-art for 
the quantitative integration of similar studies is meta-analysis (Boren-
stein et al., 2009; Cooper, 2010). Thus, a useful criterion for full data 
reporting is for authors to plan for the potential later inclusion of their 
work in meta-analyses, i.e., quantitative integration with other similar 
studies. To meet this criterion, all sample sizes, measures and outcome 
estimates (means, etc.), and their variabilities should be reported. If this 
does not fit easily with the chosen style of presentation, it should be 
included as supplementary files. 

2.4. Conducting meta-analyses 

Authors performing meta-analyses should adhere to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; 
www.prisma-statement.org). 

2.5. Studies with humans 

Reports of clinical trials should adhere to the Consolidated Standards 
of Reporting Trials (CONSORT; www.consort-statement.org) and 
applicable updates; for example, updates concerning studies of cluster 
randomized trials (Campbell et al., 2012), of non-pharmacological 
treatments, which includes guidance on reducing bias when blinding 
is not possible (Bourtron et al., 2017), and of randomized crossover 
designs (Dwan et al., 2019). Much of the guidance contained in the 
CONSORT statement also applies to the smaller experimental studies 
with human participants. Guidance available at https://www.equat 
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or-network.org/ includes other types of studies with humans. 

2.6. Studies with non-human animals 

Reports of studies with non-human animals should adhere to the 
Animal Research: Reporting of In Vivo Experiments (ARRIVE) guide-
lines (https://arriveguidelines.org/) (Percie du Sert et al., 2020). 

2.7. Robust statistical methods 

Computing has permitted the development of a variety of novel and 
powerful statistical methods, commonly known as robust statistics 
(Wilcox, 2003). Two useful methods are computerized resampling and 
bootstrapping (Kirby & Gerlanc, 2013). Authors are encouraged to 
consider these alternatives. 

2.8. Extreme values/Outliers 

Robust statistical methods to detect and exclude extreme values or 
outliers are often useful in small-sample studies. Robust methods mini-
mize the influence of suspected outliers on the statistic used to identify 
them. A simple robust method is to compute the probability of suspected 
extreme values using median standard scores:  

(x – group median)/1.48 MAD                                                                 

where x is the suspect datum, MAD is the median absolute deviate 
(median of ∣xi – group median∣ for each xi in the group; note: 1.48 MAD 
≈ the group’s standard deviation [SD]). Leys et al. (2013) provide in-
structions for computing MAD in the SPSS and R statistical packages. 
Other robust methods are described by Rousseeuw and Croux (1993). 

2.9. Null results 

Appetite recognizes the need to publish well designed experiments 
that address interesting questions but fail to result in convincing out-
comes. Not to do so inflates the meaning of positive reports and in-
validates future meta-analyses. Negative data are rarely considered 
suitable for publication, however, if the experimental design does not 
include a suitable power analysis. 

It is crucial to understand that "negative data" does not mean that the 
statistics show that there is no difference. Rather, it means only that the 
statistics failed to demonstrate evidence of a difference, which is very 
different. As has been pointed out repeatedly, “absence of evidence is 
not evidence of absence” (Alderson, 2004; Altman & Bland, 1995; 
Bramness et al., 2008; Hartung et al., 1985) Negative data should be 
described with this in mind. Bayesian statistics (§4.1.) are especially 
useful for negative data as they enable quantification of the strength of 
negative data. 

2.10. Descriptive, exploratory and analytic statistics 

Descriptive statistics summarize the data, and analytic statistics 
(§5–7) assist in making inferences about the meaning of data. Between 
the two lies exploratory data analysis or data mining, which refers to 
attempts to understand the collected data using a variety of descriptive 
approaches with the goal of discovering unexpected possibilities that 
could guide future experiments (Gelman, 2003, Tufte, 2001; Tukey, 
1977; Wainer, 2007). Wainer and Velleman’s (2008) exploration of 
blood glucose level graphing is an excellent example. Recently, 
nonparametric estimation methods have been used to quantify explor-
atory data analysis in novel ways (Harpole et al., 2014). Serendipity 
plays an important role in science. Exploratory analyses are welcome, 
but should be clearly labeled as such and described separately from 
analytic statistics. 

2.11. Data deposition 

Both raw and analyzed data should be maintained and made avail-
able upon request. Stored data should be organized and coded so that it 
is comprehensible. Authors are encouraged to deposit data in public 
repositories; a registry of public repositories is: www.re3data.org/ 

2.12. Reporting 

Authors should clearly describe the design and execution of the ex-
periments, including all measures, data manipulations, and data exclu-
sions. All randomized or blinded aspects of the design should be 
mentioned. Authors should clearly state whether the analytic plan was 
prespecified and describe any deviations from it. Studies in which the 
analytic strategy is not prespecified should be labeled as exploratory. 

3. Measurement 

3.1. Introduction 

In the physical sciences, “fundamental measurements” are generated 
when quantities that can be ordered are found to correspond to a 
number of units of an unvarying physical standard. For example, peo-
ple’s heights can be measured with meter sticks placed end to end, and 
their weights can be measured with a balance pan to which a number of 
standard weights can be added. Such measurement operations are called 
concatenations (Bond & Fox, 2015; Campbell, 1920; Tal, 2020). Derived 
measures, such as body mass index (weight in kg/height in m2), are 
computed from two or more fundamental measures. Fundamental and 
derived measures can be expressed as distances along a line of contin-
uous, infinitely divisible numbers with evenly spaced multiples of any 
number and a meaningful 0; i.e., they are real numbers, designated R in 
math. 

In psychology and many other fields there are no such measure-
ments. Although quantifiable, orderable constructs abound, there are no 
physical standards for their measurement. This leads to issues around 
the concepts of measurement error and measurement scales that authors 
must cope with. 

3.2. Measurement error 

Measurement error refers to the resolution of the measurement 
standard. The lack of physical measurement standards in psychology is 
conducive to ignoring measurement error. This should not be done. 

Measurement error is usually expressed as the SD of the theoretical 
distribution of measures. The SD of a uniform distribution from a to b =
(b - a)/120.5. For measurements in the form 1, 2, 3, …, if integers 
correspond to values of a latent variable that is located along a segment 
of a continuous real-number scale, then 1) the absolute error is ±0.5 
units of the integer, and 2) b – a = 1, so the SD of measurement error =
0.29. 

Measurement error propagates through mathematical manipulations 
according to Gauss’ theory of errors (Joint Committee for Guides in 
Metrology, 2008). If one adds measurements x1, x2, …xn that have 
measurement errors SD1, SD2, …SDn, then the measurement error of the 
sum = (SD1

2 + SD2
2, …+ SDn

2)0.5. If one multiplies or divides a measure 
by a constant, the SD of measurement error is simply multiplied or 
divided by the same constant. Thus, the measurement error of a mean is 
less than that of the individual measurements. 

3.3. Measurement scales 

To address the lack of fundamental measures in psychology and 
many other fields, Stevens (1946) introduced an expanded categoriza-
tion of measurement scales and described the mathematical operations 
appropriate to each. The definitions are given in Table 1. 
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According to these definitions, fundamental and derived measures as 
defined in §3.1. are ratio scales; i.e., real numbers. Interval scales are 
segments of the real number line. Ordinal scales, and improvements to 
them (Coombs, 1950; Guttman, 1944; Kyngdon, 2013), are not real 
numbers. Nominal (or categorical) measures are not numbers in any 
mathematical sense, but merely names of groups. They should perhaps 
be renamed nominal properties (Adroher et al., 2018). 

Stevens (1946) accepted that few of psychology’s measures were 
interval or ratio scale (some psychophysical measures were apparent 
exceptions). Ironically, however, he also initiated the long tradition of 
using all the tools of arithmetic to analyze presumably ordinal data 
anyway. He defended this pragmatically, arguing that the outcomes 
were often useful. Others pointed out that studies of convergent and 
construct validity suggested that the errors produced by treating ordinal 
data as interval are usually relatively small. These perspectives remain 
the common practice of our field. 

Within ~20 y of Stevens (1946) paper, a new measurement theory, 
called conjoint measurement, was developed that provided mathemat-
ically valid alternatives to Stevens’ pragmatic approach to the problem 
of ordinal-level measurement (Krantz et al., 1971; Luce and Tukey, 
1964; Rasch, 1960). One form of conjoint measurement, item response 
theory (IRT), is based on the structure of ordered matrices of individual 
performance on each scale item. The most widely accepted IRT model is 
Rasch analysis (Adroher et al., 2018; Bond and Fox, 2015). In the 
simplest case, in which items probing some latent variable are answered 
or performed successfully or not, Rasch analysis is based on the proba-
bility function:  

Pnj(success) = f(Bn - Dj)                                                                         

where Pnj(success) is the probability that participant n responds suc-
cessfully to item j, Bn is the participant n’s ability with respect to the 
latent variable measured, and Dj is the difficulty of item j. Rasch (1960) 
demonstrated that if f is a logistic function, then the scale has interval 
properties. Rasch and others have provided similar demonstrations for a 
number of designs (for further explanation and examples, see Bond and 
Fox, 2015; da Rocha et al., 2013; Pallant and Tennant, 2007; Sijtsma, 
2011). The R statistical package includes extensive software for Rasch 
modelling (Mair et al., 2017; R Core Team, 2021). 

The Rasch model provides statistics quantifying the fits of individual 
items to the logistic model; i.e., to an interval-level scale. Ideally, scale 
construction is done iteratively, as adding or omitting items affects the 
logistic fit of the remaining items. Rasch analysis of existing scales 
usually indicates that some adjustment improves the fit of the scale to 
the model. 

Conjoint measurement methodology has not penetrated noticeably 
into appetite research. An exception is the corrected Eating Disorder 
Examination Questionnaire (Gideon et al., 2016; Jinbo et al., 2021; 
Kampen, 2019; Prnjak et al., 2020), which should be adopted. There are 

understandable reasons for the rarity of conjoint measurement in 
appetite research. Rasch and similar methods require quite large 
numbers of participants, and appetite research is largely small-scale 
discovery research, often involving ad hoc questionnaire development. 
Nevertheless, Appetite encourages the development of corrected scales, 
especially for widely used instruments. 

3.4. Reporting 

Data ordinarily should be reported in the form measured, using SI 
units (Le Système International d’Unités) where possible and clearly 
defined units otherwise. Data shown in figures or tables should not be 
described in the text. If the data are in not in natural units (i.e., not g, J, 
etc.) or not in units with known biological or clinical meaning, then 
effect sizes are accepted indices of meaningfulness (see §4.2.). The R 
statistical package calculates effects sizes for a variety of parametric and 
non-parametric tests (R Core Team, 2021). 

Data should be reported using significant figures; i.e., powers of 10 
that reflect the precision of the measurements, as discussed in §3.2. The 
rule of thumb is that measures should be reported to the same precision 
as the individual measurement (although as described in §3.3, means 
have greater precision than the sum). 

Measurement scales (3.3) determine appropriate forms of data 
analysis. To describe central tendency, means are appropriate for ratio 
or interval scales, medians for ordinal scales, and modes for nominal 
scales. To describe spread, SD and related measures are appropriate for 
ratio or interval scales, and the index of dispersion (D) is appropriate for 
ordinal or nominal scales:  

D = k(n2 – sum fi
2) / n2 (k – 1)                                                               

where k is the number of categories or intervals, n is the number of data 
points, and f is the number of data points in each of the categories, i = 1 
to k. Many texts recommend ranges for ordinal data, but this is incorrect 
because ranges indicate intervals, which are not meaningful for ordinal- 
scale measures. 

In addition to measurement issues, the scientific utility of precision 
should be considered in reporting. High precision may not be mean-
ingful even if it is accurate. For example, the age of adult participants 
should not be reported to 0.01 y, which is 3.5 d and has no scientific 
meaning. Similarly, adult weights reported to precision 0.01 or 0.001 kg 
are generally meaningless. 

4. Introduction to analytic statistics 

4.1. Approaches 

Statisticians recognize three approaches to analytic statistics. We 
discuss the two most commonly used approaches, the statistical-sig-
nificance approach and the estimation approach. Both are based on 
the classical contributions to mathematical probability of Carl Friedrich 
Gauss (distributions of normal errors, least squares estimation, etc.) and 
Pierre-Simon LaPlace (central limit theorem, etc.) in the early 19th C. 
Despite their common roots, these involve different analytic methods, 
different language, and different logical rules for data interpretation. For 
example, in the statistical significance approach, one tests hypotheses 
such as, “is there a difference between groups X and Y?”, whereas in the 
estimation approach, rather than framing specific hypotheses, one asks, 
“how large is the difference between groups X and Y?” Appetite accepts 
both approaches. They should not, however, be mixed in a single 
experiment. 

A third approach is Bayesian statistics. In Bayesian statistics data 
are used to revise a “prior probability” that the population distribution 
from which the sample is drawn has certain characteristics (e.g., a 
certain mean) to produce a “posterior probability” (López Puga et al., 
2015ab). Prior probabilities can be based on data, reasoning or 

Table 1 
Stevens’ (1946) definitions of scales of measurement.  

Scale Measures derive from determination of: Permissible arithmetica 

Nominal Equality Noneb 

Ordinal Greater than or less than Nonec 

Interval Equality of intervals (e.g., [5–3] = [4–2]) Add, subtractd 

Ratio Equality of ratios (e.g., [6/3] = [4/2]) Multiply, dividee  

a Arithmetic operations involving ≥2 measured quantities are permissible if 
they do not change the properties of the scale; permissible transformations of 
single measured quantities are described by Sarle (1997). 

b Counting category members is permitted. 
c Counting numbers of data points more or less than another is permitted. 
d Addition and subtraction are permitted. Multiplication and division are 

permitted on differences relative to a point on the scale, such as the mean, but 
not on raw data. 

e Equality of ratios requires that the scale has a meaningful 0 value. Non-linear 
transformations of data (e.g., squares, roots, logs, etc.) are not permitted. 
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speculation. Bayesian statistics quantify the evidence supporting 
competing hypotheses and as such can be useful in interpreting 
non-significant results obtained from null hypotheses testing. More 
specifically, the ratio of the posterior probabilities of alternative hy-
potheses, known as the Bayes factor, represents the relative weight of 
evidence in the data for the competing hypotheses. For further reading 
on the use of the Bayes factor to assess the degree to which 
non-significant results support a null hypothesis over a theory see Dienes 
(2014). 

Another categorization of analytic statistics is based on assumptions 
about the population distribution. Parametric methods include as-
sumptions about the specific form of the population distribution, for 
example, that it is Gaussian (normal). In contrast, nonparametric 
methods require few assumptions about population distribution. 
Guidelines for these approaches are described in §5–7. 

4.2. Probabilities and meaning 

Both the statistical-significance approach and the estimation 
approach lead to estimates of the probabilities related to the observed 
outcomes. In the former, the null hypothesis of no group difference is 
rejected, and the observed difference is considered statistically signifi-
cant, if the observed data indicate that the probability that the null 
hypothesis is true is less than some pre-selected probability, α, most 
often P = 0.05. In the latter, attention is focused on probabilities that 
various parameters fall in a certain range, usually the range in which the 
outcome will occur with P ≥ 0.95, known as the 95% confidence interval 
or 95% CI. 

Statisticians find that interpretations of statistical significance and 
estimations outcomes are often faulty. Specifically, interpretations often 
fail to recognize that the probabilities generated are points on a 
continuous probability continuum, not categorical criteria for dichoto-
mizing results as meaningful or not. Thus, in a statistical significance 
approach, P = 0.051 is usually not meaningfully different from P =
0.049, and in an estimation approach, a value associated with P=0.94, i. 
e., a value within the 95% CI, is not meaningfully different from a value 
with P=0.96. This kind of misunderstanding has had ripple effects that 
adversely affect science. In response, the American Statistical Associa-
tion published a series of articles discussing strategies to mitigate the 
misuse of statistical significance (Wasserstein et al., 2019). Some 
important points were:  

• Statistical results should be recognized as being incomplete and 
uncertain (Amrhein et al., 2019).  

• Because P values are estimates, they should be reported as exact 
estimates (e.g., P = 0.04 or P = 0.07).  

• Interpretations should consider the magnitude of differences with 
respect to behavioral or physiological importance or, if that is not 
possible, with respect to effect sizes (Blume et al., 2019; Betensky 
2019; Goodman, Spruill, & Komaroff, 2019). (Effect sizes are 
described in several sections below.)  

• A finding of statistical significance is not sufficient evidence to 
conclude that the effect is highly probable, true, or important. In-
terpretations should consider the outcomes of similar published 
studies and should recognize that important results will be refined by 
meta-analyses (see §2.3–2.4) and by experiments with improved 
measures, more sensitive designs, and larger samples.  

• Authors should recognize that subjectivity can influence every step 
between planning a study to interpreting the results. Therefore, au-
thors should search for and minimize bias in their reasoning and 
choices thoughtfully (Ioannidis, 2019). 

Appetite endorses these and other best practices in analytical 
statistics. 

5. Parametric analytic statistics 

5.1. t-tests and ANOVA 

The most familiar analytic statistics, t-tests and analysis of variance 
(ANOVA), are categorical parametric statistics: categorical because the 
independent variable is different levels of some nominal or categorical 
measure (e.g., two sexes) rather than a continuous dimension (e.g., age), 
and parametric because they are based on mathematics assuming the 
Gaussian (normal) distribution and therefore require interval- or ratio- 
scale measurements. Collapsing dimensional data into categories to 
enable ANOVA should be avoided. 

ANOVA analyses can be re-cast in part or whole as correlational 
analyses. For example, analysis of covariance (ANCOVA) combines an 
ANOVA approach with a correlational approach. If a design includes 
baseline data, considering the experimental data as correlates of the 
baseline measure is usually the best strategy (George et al., 2016). More 
complex designs are now frequently analyzed using only correlational 
approaches, such as GLM (see §5.3). 

5.1.1. Assumptions 
For t-tests, computer modeling has demonstrated that the assump-

tion that the data are drawn from Gaussian distributions is not crucial; 
there is little risk of error as long as the distributions are unimodal and 
fairly symmetric. This is not the case for ANOVA. Rather, the distribu-
tions of all groups should be approximately Gaussian unless sample size 
is at least moderate (often defined as ≥ 30), their variances should be 
similar, groups sizes should be nearly equal (this is not crucial for one- 
way ANOVA), and, for repeated measures designs, the sphericity crite-
rion should be met. ANCOVA has the additional requirement that the 
continuous variables produce parallel correlations. Many computer 
statistics packages include tests of these criteria. If the assumptions of 
parametric categorical approaches are not met, non-parametric ap-
proaches are called for (see §7). 

5.1.2. Data transformation 
If the ANOVA assumption of Gaussian distributions is not met, it is 

common practice to transform the data into a form that does approxi-
mate a Gaussian distribution, for example, by using square roots or logs 
of the data. It should be recognized that this practice comes at a cost. The 
transforms are typically not permissible operations on the measures as 
described in §3.3 because they distort the measurement scale. Thus, if 
the measurements were assumed to be conjoint measures of a certain 
latent variable, then the transformed data no longer are. This may 
complicate interpretation in terms of the latent variable, comparison of 
the outcomes with other analyses in which transforms were not done, 
etc. For example, in factorial designs, data transforms often produce 
interactions even if the raw data are additive (see §5.1.3.). 

Ratios of random variables are problematic from several perspec-
tives, so that correlational analyses (§5.2) are usually the better choice 
(Allison, Paultre, Goran, Poehlman, & Heymsfield, 1995). Trans-
formations into percentages of baseline values are especially trouble-
some because percent changes of small absolute differences relative to 
smaller baseline values can be larger than percent changes of larger 
absolute differences relative to larger baseline values. Therefore, per-
centages should not be done without a theoretical justification. As 
described above ANCOVA is usually preferable. 

5.1.3. Interaction effects 
Factorial ANOVA are almost universally analyzed by partitioning the 

variance among main effects, interaction effects and error, although it is 
entirely possible to partition variance without interactions. The choice 
whether to include interaction effects should be an educated one. First, 
because interactions are defined as departures from additivity, unless 
the factors are themselves additive, computing additive interactions 
makes little sense. Second, if the independent variable is truly 
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categorical, whether its levels are additive or not is impossible to 
determine; (Caudle and Williams, 1993; Geary, 2013; Winer, 1971). 

5.1.4. ANOVA follow-up 
ANOVA and related approaches to analyze experiments involving 

more than two groups are known as omnibus procedures because they 
yield overall estimates of statistical significance. These usually require 
follow-up tests to identify the specific source(s) of significance. Unless 
the experiment is considered exploratory, follow-up tests should protect 
the experiment- or analysis-wide α (see §5.1.5.). 

5.1.5. Multiplicity 
If several measures are used to test a single hypothesis (for example, 

different measures of the same underlying process), these should be 
regarded as a single family of tests, and it is necessary to maintain or 
protect the family-wide type 1 error rate (α, the probability of obtaining 
statistical significance when in fact there is no effect) or, alternatively, 
the false-discovery rate. In the absence of a hypothesis, descriptive 
rather than analytic statistics are usually preferable. 

Type-1 error rates increase exponentially with the number of tests of 
the hypothesis (n). This is easily calculated by subtracting the proba-
bility of making no type-1 errors from 1:  

P[1 or more type-1 errors] = 1 – (1 - α)n                                                   

For example, if a brain-imaging study tests the hypothesis that a 
manipulation will increase neural activity in the limbic system, if α =
0.05, and if 13 limbic areas are measured, then P[1 or more type-1 er-
rors] > 0.50. 

A number of methods have been used to protect the experiment (or 
analysis)-wide type-1 error rate. Some of these, however, have been 
determined to be defective and should not be used; these include mul-
tiple t-tests, (Fisher’s) LSD test, and Dunnett’s test. Others are valid, but 
unnecessarily “conservative,” i.e., have poor power. This is the case for 
both the Tukey HSD test and Bonferroni correction procedure. 

For this reason, alternatives to these classic methods are increasingly 
preferred. These alternatives are based on controlling the false- 
discovery rate (FDR) rate. (Benjamini, 2010; Benjamini & Hochberg, 
1995; Curran-Everett, 2000). Rather than controlling multiplicity by 
computing the probability of at least one false positive result (i.e., the 
probability of one type 1 error), FDR methods are based on the estimated 
ratio of the number of false positive results to the total number of re-
jections of the null hypothesis, i.e., the sum of correct results and 
false-positive results. In these methods, effects are compared sequen-
tially to adjusted P levels ranging from α/# tests to α. Hochberg (1988) 
is the most widely used method. 

It is important to note that the Bonferroni procedure and FDR stra-
tegies can be applied to parametric and nonparametric analyses alike. It 
is also important to appreciate the difference between simple and 
complex follow-up tests: the former are valid only to test individual 
group means; the latter must be used to test combinations of means, an 
issue that arises frequently (see §5.1.6.). Note that most computerized 
statistical packages offer only simple follow-up tests. 

5.1.6. Complex follow-up tests 
Interaction tests arise in designs comparing in two or more experi-

mental effects. These situations require an explicit test of the difference 
in the two effects; it does not suffice to show that one effect is significant 
and the other is not. Complex interactions involve more than two effects, 
for example comparing two (control – test) effects. In many designs, 
these are the critical outcomes (Nieuwenhuis et al., 2011). Most 
computerized statistical packages do not offer such tests. They can be 
done with the methods mentioned in §5.1.5. 

5.1.7. Planned comparisons 
Typical ANOVA follow-up tests for differences between pairs 

(Tukey’s HSD test, etc.) often involve a large number of tests (if there are 
k groups in the ANOVA, there are C(k, 2) = k!/[2 (k-2)!] pairwise 
contrasts). Protecting the analysis-wide α leads to each comparison 
having rather low power. If several of these differences are not of in-
terest, planned comparisons provide a more powerful alternative. A 
simple and adaptable planned-comparison method is to design the 
necessary comparisons and test them using the Hochberg method (see 
§5.1.5). In the planned-comparisons approach, ANOVA is used simply to 
generate an experiment-wide standard error of the difference (SED), not 
to assess overall significance, according to the formula:  

SED = [ 2 MSerror / n]1/2,                                                                       

where n is the n per group, not the total n in the analysis. 

5.1.8. Power 
Power refers to the probability of detecting an effect of a certain size. 

In the statistical-significance approach, power is defined as 1 - β, where β 
is the probability of a type 2 error, i.e., not detecting a significant effect 
when there is one. Experiments should be designed with adequate 
power. Underpowered experiments reduce the probability both [i] true 
effects will be detected, and [ii] that significant results reflect true ef-
fects (Button et al., 2013). Note also that replicating significant results is 
expected to require larger sample sizes than used in the original study 
(Button et al., 2013). 

5.1.9. Effect size 
The statistical outcome describes the probability that the effect 

might be observed under the null hypothesis. This does not translate 
simply into a statement of the magnitude of the effect. Effect-size sta-
tistics are designed for that purpose. Most effect sizes are differences 
normalized by their SD, resulting in dimensionless statistics ranging 
from 0 to 1. In the case of t-tests, if the two groups have means m1 and 
m2, and have similar sample sizes and variabilities, then the difference 
between them can be described as Cohen’s δ (Cohen, 1988, 1992):  

δ = (m1 - m2) ⁄ SDpooled.                                                                         

Cohen’s δ ≥ 0.2, ≥0.5, and ≥0.8 are generally considered small, 
medium, and large effects, respectively. Other effect sizes are applicable 
to other two-sample cases. Lee (2016) lists several. 

For ANOVA, a common effect size is:  

η2 = SSfactor / SStotal.                                                                              

η2 ≥ 0.01, ≥0.06 and ≥0.14 are considered a small, moderate and 
large effects, respectively (Stevens, 2001). 

5.1.10. Reporting 
Results of categorical statistical tests should be reported in standard 

detail; i.e. for ANOVA, report the F value, degrees of freedom(df), and 
probability: F(1,25) = 4.33, P = 0.0x. A precision of 0.01 ordinarily 
suffices for reporting text statistics. As described in §4.2, exact proba-
bilities should be given rather than P < 0.05. Sample sizes should be 
given, for example in figure captions. Effect sizes are usually helpful. If 
tables of statistical outcomes are appropriate, these may be given as 
supplementary data. 

If the Bonferroni or a FDR approach (§5.1.5.) is used, then P values 
should be corrected to make them comparable to α. For example, if a 
particular difference is compared against α/3 then the three times the 
observed P value is comparable to α. These should be referred to as 
Pcorrected. 

Reporting variability brings several choices. Optimally, both the SD 
as a measure of population spread and either the standard error of the 
mean (SEM) or 95% CI (assuming α = 0.05) as a measure of the accuracy 
of the estimation of the mean are reported. Carter (2012) describes the 
advantages of the 95% confidence interval over the SEM. Note, however, 
that if data derive from repeated-measures designs, both the usual SEM 

Editorial                                                                                                                                                                                                                                           



Appetite xxx (xxxx) xxx

6

and 95% CI conflate within- and between-subject variability; in such 
cases, the SED (§5.1.7) or repeated-measures CI are more meaningful. 

5.2. Correlational analyses 

Correlational or dimensional analyses are applicable to a variety of 
bivariate and multivariate data. Methods for both the statistical- 
significance approach (described here) and the estimation approach 
are available. Several correlational methods (mediation analysis, path 
analysis, etc.) suggest causal relationships, but correlations never prove 
causality. 

5.2.1. Simple regression 
For bivariate data (x,y), the regression line minimizes the sum of 

squared deviations in y from the fit line; x values are considered error- 
free. The regression line has the form ŷ = b0 + bx, where ŷ is the pre-
dicted y value (the ŷ − y values for each x are called residuals), b0 is the 
intercept of the regression, and b is its slope. The process generates 
several parameter estimates, including: 1) an F test of the significance of 
the regression; 2) 95% CI for each x value; 3) β, which is b in SD units, β 
= b (SDx/SDy); 4) the effect size or coefficient of determination, R2, 
which is the proportion of variance in y explained by variance in x; and 
5) the Pearson correlation coefficient, r, which is the square root of R2; r 
takes the sign of b, and is another measure of effect size (note that r is not 
equivalent to δ; rather, δ = 2r/(1 - r2)1/2). Importantly, none of these 
parameters gives an impression of what the data actually look like; for 
that, the scatter plot is indispensable. Anscombe (1973) provided a 
graphic example of how different data sets with identical b0, b, variance 
and r can be. 

Different subgroups should not be included in a single correlation 
unless each group appears to have the same slope and intercept as the 
overall correlation; failure to do so can lead to “Simpson’s paradox” - an 
overall effect whose direction is opposite to those of the subgroups 
(Klevit et al., 2013). Collapsing dimensional data into categories to 
enable categorical analysis approaches (e.g., ANOVA) should be 
avoided. 

5.2.1.1. Assumptions and reporting. The assumptions of simple regres-
sion are: 1) the data are interval or ratio scale; 2) the data are inde-
pendent; 3) the two variables are linearly related; 4) that there are no or 
few extreme values (if there are outliers, the regression should be veri-
fied in their absence); 5) the residuals are normally distributed and 
homoscedastic. There are no assumptions about the distributions of the 
independent variable. 

Authors should report: 1) how the assumptions were verified; 2) 
sample size; 3) b0 and b; 4) signed r, its df, and P. The unsigned r or R2 

serves as an effect size. 

5.2.2. Multiple regression 
Multiple regression describes linear relationships between several 

independent variables and one dependent variable. A multiple correla-
tion coefficient r is produced, with R2 indicating the proportion of 
variance in the dependent variable accounted for by all the independent 
variables. In multiple regression, the β for each independent variable is a 
standardized (as in §5.2.1.) partial weight, indicating the unique 
contribution of that variable after controlling for the effect of all the 
other variables. Thus, if the dependent variables are correlated with 
each other, β can be quite small. For this reason, the interpretation of 
multiple correlations usually requires consideration of both b and β 
values. Adequate sample size for multiple regression is 5–10 times the 
number of variables. 

Classical mediation analysis is a multiple regression method in which 
a series of regressions are used to indicate whether a variable inter-
vening between a predictor and an outcome explains part or all of the 
relationship between the predictor and outcome. If the intervening 

variable is found to interact with the predictor, then the relationship is 
referred to as moderation rather than mediation. Classical mediation 
analysis is increasingly replaced by a bootstrapping method to establish 
mediation (Hayes, 2017). Bootstrapping is a nonparametric method that 
has the advantages that normality is not required and that smaller 
sample sizes can be used. 

5.2.2.1. Assumptions and reporting. Multiple regression makes the same 
assumptions as simple regression (§5.2.1.1.). Again, there are no as-
sumptions about the distributions of the independent variables. If some 
independent variables are dichotomous, “centering” often renders out-
comes more intelligible (Kraemer and Blasey, 2004). 

Authors should report: 1) how the assumptions were verified; 2) 
standardized regression weights with t-tests and P; 3) unstandardized 
regression weights with SE, t-tests, df and P; 4) R2; and 5) the overall F 
with df and P. 

5.2.3. Advanced linear modeling 
As mentioned in §5.1, ANOVA analyses can be re-formulated and 

generalized as multivariate linear regressions. There is a similar hier-
archical relationship among more advanced analytic models (Graham, 
2008). General linear models (GLM) combine several multivariate linear 
regression models in a matrix structure. Thus, GLM can incorporate t- 
and F-tests, ordinary regressions, ANCOVA, and others, and can provide 
overall and individual tests of the modeled effects. Furthermore, by 
using link functions to transform non-linear functions into linear func-
tions, GLM can be extended to model non-linear data, thereby accom-
modating Poisson and other non-linear regressions. Generalized linear 
mixed models (GLMM) extend GLM to include random effects in the 
predictor variables. 

In structural equation modeling (SEM), factor analysis and multiple 
regression approaches are combined to analyze relationships between 
measured and latent variables (Kline, 2015; Schumacker and Lomax, 
2016; Ullman and Bentler, 2013). Thus, GLM can be seen as a special 
case of SEM. SEM can be used to model different connections among 
predictor variables, latent variables, and measured outcomes. Following 
specification of a model, SEM estimates its parameters from the data, 
uses them to generate an estimated population covariance matrix, and 
estimates the fit of the model from it. Varieties of SEM include explor-
atory factor analysis and path analysis. SEM also permits estimates of 
differences in the means of measured and latent variables. Confirmatory 
factor analysis can be used to test the statistical validity and indepen-
dence of the constructs included in the SEM, independent of the re-
lationships posited by the model. 

Sample sizes for GLM or GLMM depend on the number of variables 
modeled. Several statistical packages contain algorithms to assess power 
and sample size (e.g., Williamson, 2020). SEM generally requires quite 
large samples. Sample size is usually considered adequate if the ratio of 
sample size n to the number of estimated parameters q, is n/q ≥ 10, 
although some argue for n/q ≥ 20 (Kline, 2015). 

5.2.3.1. Assumptions and reporting. These models rest on a number of 
assumptions. If a maximum likelihood estimation approach is used, the 
raw or transformed data should be interval or ratio scale data with ho-
moscedastic multivariate normal distributions. Relatively small viola-
tions of normality can have large effects on outcomes, so outliers should 
be censored and missing data imputed. If these assumptions are not met, 
a least-squares approach should be used. The variables should be line-
arly related to each other and relatively additive. Error terms should be 
uncorrelated. 

Reporting should include: 1) a diagram of the model with stan-
dardized regressions near the arrows and significances indicated; 2) the 
sample size and ratio of sample size to parameters estimated; 3) the type 
of matrix analyzed, with link functions identified; 4) the model chi 
squared, χ2

M, with df, or other overall fit statistic; 5) one or more 

Editorial                                                                                                                                                                                                                                           



Appetite xxx (xxxx) xxx

7

approximate fit indices; 6) evidence of linearity or the fit of link func-
tions; 7) unstandardized (with SE) and standardized model parameters; 
8) whether there were outliers, and how they were handled. Models with 
good overall fit should have χ2

M ≫ 0.05; this indicates that the model is 
consistent with the data, not whether it is actually correct. The most 
common fit index is the Steiger–Lind root mean square error of 
approximation (RMSEA), which should be reported with a CI (Steiger, 
2010). RMSEA of 0.01, 0.05 and 0.08 are considered excellent, good and 
poor, respectively. It is considered best practice to compare fits of 
alternative models and to consider the implications of models with 
nearly equivalent mathematical fits. 

6. Estimation approaches 

6.1. Point and interval estimates 

The estimation approach is based on estimates of the values of the 
important experimental outcomes and their precision, i.e., the proba-
bility that the estimates fall in a certain range (the confidence interval, 
CI; typically the 95% CI). These two statistics are usually called point 
and interval estimates. Often the parameter estimated is the effect size 
(see §6.2.). 

CI for repeated measures designs should be computed separately 
from those of the individual groups. Blouin and Riopelle (2005) and 
Masson and Loftus (2003) describe methods. 

The estimation approach requires larger sample sizes to function 
than the statistical significance approach. Cumming (2014) states that if 
n < 10, CI are usually so large as to not be interpretable. 

6.2. Effect sizes 

Effect sizes are increasingly considered to provide a crucial basis for 
interpretation (Blume et al., 2019; Betensky, 2019; Cumming, 2012, 
2014; Goodman et al. 2019). CI can also be associated with effect sizes 
(Lee, 2016). For example, for two normally distributed samples of size n1 
and n2, the effect size estimate is δ (§5.1.9.) and its 95% CI is:  

δ − 1.96 σ(δ) to δ + 1.96 σ(δ),                                                                

where σ(δ) = [ (n1+n2)/n1n2 + δ2/2 (n1+n2) ]1/2. 
Bivariate data have to have bivariate normality to compute an effect 

size. If the data are not normal, Fisher’s z’ transform of r can normalize 
them and permit computation of a 95% CI. 

6.3. Power 

Estimation approaches do not involve α, so there is no β and statis-
tical power cannot be calculated. Instead, one specifies the size of the 
maximum CI desired and uses the expected variance of the sample to 
calculate the sample size required to yield it (Maxwell et al., 2008; 
Cumming, 2014). 

6.4. Multiplicity 

Unless the study is exploratory, multiplicity (§5.1.5.) should be 
controlled if a number of CI are used to analyze a family of hypotheses. 
Benjamini and Yekutieli (2005) describe an FDR method for this. 

6.5. Interpretation and reporting 

The interpretation of statistical estimates is introduced in §4.2. CI, 
effect sizes and many significance testing outcomes are mathematically 
interconvertible (Altman and Bland (2011) give some examples). The 
two approaches are, however, epistemologically very different. That is, 
recognizing that single results are unlikely to be dispositive as to 
meaning, estimates and their precisions are interpreted in a continuous 

rather than dichotomous way. The underlying assumptions are [i] that 
the particular outcome of an experiment is just one of an infinite number 
of outcomes from the underlying sampling distribution, and [ii] that the 
best use of the data is in a future meta-analysis. Statistical significance is 
not assessed, and no particular importance is given to outcomes that 
would be statistically significant versus outcomes that are similar but 
would not be significant. Both the upper and lower limits of CI should be 
discussed. For more discussion, see Cumming (2012, 2014) and Was-
serstein et al. (2019). 

Point estimates (i.e., the sample means, etc.), interval estimates (e.g., 
95% CI or effect sizes), group SD and sample sizes should all be reported. 
Graphical displays are often effective for reporting CI. The two- 
dimensional cat’s eye representation combines the length of the confi-
dence interval and the shape of its sampling distribution (Cumming, 
2014). 

7. Nonparametirc statistics 

Nonparametric approaches, i.e., those that make few assumptions 
about the populations sampled (most notably, the assumption of 
Gaussian population distributions) are used for categorical (nominal)- or 
ordinal-scale data and for interval- or ratio-scale data that fail to meet 
the assumptions for parametric tests. For example, because Likert scales 
(Likert, 1932) are in theory ordinal, non-parametric tests are the safer 
option for them. Nonparametric tests are generally less susceptible to 
type-1 errors, but more susceptible to type-2 errors. 

7.1. Statistical-significance approach 

For categorical (nominal) measurements, the variations on the chi- 
squared test are usually the best choice: [i] The standard chi-squared 
tests for differences among expected and observed frequencies in one 
or more categories related to a single independent variable; [ii] McNe-
mar chi-squared test for differences among expected and observed fre-
quencies if there are paired categories, again with one independent 
variable; [iii] the Mantel-Haenszel chi-squared for differences among 
expected and observed frequencies in one or more categories related to 
two independent variables. These tests break down if the expected or 
observed frequencies in individual cells are < 6. In this situation, 
Fisher’s exact test can be used. 

The chi-squared distribution, upon which the chi-squared test is 
based, comes up in many contexts. For example, the expected value of 
sample variances follows the chi-squared distribution. Thus, the F dis-
tribution, which is the basis of ANOVA, is the ratio of two chi-squared 
distributions. 

For ordinal (ranked) data, the Mann–Whitney–Wilcoxon test is an 
appropriate nonparametric version of t-tests for both independent and 
non-independent samples. It tests for differences in the central tendency 
(not means) of two groups. This test can be more powerful than the t-test 
if, for example, the data include extreme values. It is important to note 
that not all computerized statistics packages compute this statistic 
accurately (Bergmann et al., 2000). The Kruskal-Wallis and Friedman 
and tests are appropriate nonparametric versions of one-way ANOVA for 
independent samples and repeated-measures samples of ranked data, 
respectively. 

Nonparametric approaches also require control of multiplicity (see 
§5.1.5.). 

Spearman’s rho is an appropriate nonparametric measure of associ-
ation if one or both variables is an ordinal-scale measurement or the data 
fail to meet the assumptions of simple regression. 

7.1.1. Reporting 
Because non-parametric tests use the ordinal structure of the data, 

central tendency should be reported with medians and ranges, usually 
the semi-interquartile range or MAD (see §2.8.). 

Both the df and the sample size are required to specify the probability 
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level of chi-squared tests, so both should be reported, along with the 
value of the test statistic and its probability. The Man-
n–Whitney–Wilcoxon, Kruskal-Wallis and Friedman tests depend only 
on the group sizes, so these should be reported together with and the test 
statistics and their probabilities. The significance of Spearman’s rho is 
tested with a t-test and reported as described above. As described in §4.2, 
exact probabilities should be given. 

7.2. Estimation approach 

Nonparametric estimation methods are not as advanced as the 
nonparametric significance tests described above, although a number 
are under development (Brown and Levine, 2007; Powell, 2003, 2003; 
Soltanian and Hossein, 2012; Wang et al., 2012). Methods based on 
kernel-density estimation (Parzen, 1962; Rosenblatt, 1956) are used 
increasingly in both exploratory data analysis (e.g., Harpole et al., 2014) 
and in analytic statistics (e.g., Miladinovic et al., 2014). 
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